Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612449

RESUMO

Stress granules (SGs) are membraneless ribonucleoprotein (RNP)-based cellular foci formed in response to stress, facilitating cell survival by protecting against damage. Mammalian spermatogenesis should be maintained below body temperature for proper development, indicating its vulnerability to heat stress (HS). In this study, biotin tracer permeability assays showed that the inhibition of heat-induced SG assembly in the testis by 4-8 mg/kg cycloheximide significantly increased the percentage of seminiferous tubules with a damaged blood-testis barrier (BTB). Western blot results additionally revealed that the suppression of heat-induced SG assembly in Sertoli cell line, TM4 cells, by RNA inference of G3bp1/2 aggravated the decline in the BTB-related proteins ZO-1, ß-Catenin and Claudin-11, indicating that SGs could protect the BTB against damage caused by HS. The protein components that associate with SGs in Sertoli cells were isolated by sequential centrifugation and immunoprecipitation, and were identified by liquid chromatography with tandem mass spectrometry. Gene Ontology and KEGG pathway enrichment analysis revealed that their corresponding genes were mainly involved in pathways related to proteasomes, nucleotide excision repair, mismatch repair, and DNA replication. Furthermore, a new SG component, the ubiquitin associated protein 2 (UBAP2), was found to translocate to SGs upon HS in TM4 cells by immunofluorescence. Moreover, SG assembly was significantly diminished after UBAP2 knockdown by RNA inference during HS, suggesting the important role of UBAP2 in SG assembly. In addition, UBAP2 knockdown reduced the expression of ZO-1, ß-Catenin and Claudin-11, which implied its potential role in the function of the BTB. Overall, our study demonstrated the role of SGs in maintaining BTB functions during HS and identified a new component implicated in SG formation in Sertoli cells. These findings not only offer novel insights into the biological functions of SGs and the molecular mechanism of low fertility in males in summer, but also potentially provide an experimental basis for male fertility therapies.


Assuntos
Barreira Hematotesticular , DNA Helicases , Masculino , Animais , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , beta Catenina , RNA , Claudinas , Mamíferos
3.
Biophys Rev ; 16(1): 125-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495438

RESUMO

Resolving lineage relationships between cells in an organism provides key insights into the fate of individual cells and drives a fundamental understanding of the process of development and disease. A recent rapid increase in experimental and computational advances for detecting naturally occurring somatic nuclear and mitochondrial mutation at single-cell resolution has expanded lineage tracing from model organisms to humans. This review discusses the advantages and challenges of experimental and computational techniques for cell lineage tracing using somatic mutation as endogenous DNA barcodes to decipher the relationships between cells during development and tumour evolution. We outlook the advantages of spatial clonal evolution analysis and single-cell lineage tracing using endogenous genetic markers.

4.
Theranostics ; 14(5): 2127-2150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505619

RESUMO

Rationale: Immune checkpoint inhibitors targeting the programmed cell death (PD)-1/PD-L1 pathway have promise in patients with advanced melanoma. However, drug resistance usually results in limited patient benefits. Recent single-cell RNA sequencing studies have elucidated that MM patients display distinctive transcriptional features of tumor cells, immune cells and interstitial cells, including loss of antigen presentation function of tumor cells, exhaustion of CD8+T and extracellular matrix secreted by fibroblasts to prevents immune infiltration, which leads to a poor response to immune checkpoint inhibitors (ICIs). However, cell subgroups beneficial to anti-tumor immunity and the model developed by them remain to be further identified. Methods: In this clinical study of neoadjuvant therapy with anti-PD-1 in advanced melanoma, tumor tissues were collected before and after treatment for single-nucleus sequencing, and the results were verified using multicolor immunofluorescence staining and public datasets. Results: This study describes four cell subgroups which are closely associated with the effectiveness of anti-PD-1 treatment. It also describes a cell-cell communication network, in which the interaction of the four cell subgroups contributes to anti-tumor immunity. Furthermore, we discuss a newly developed predictive model based on these four subgroups that holds significant potential for assessing the efficacy of anti-PD-1 treatment. Conclusions: These findings elucidate the primary mechanism of anti-PD-1 resistance and offer guidance for clinical drug administration for melanoma.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Antígeno B7-H1 , Microambiente Tumoral
5.
Adv Healthc Mater ; : e2304439, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486060

RESUMO

Hepatocellular carcinoma (HCC) hematogenous dissemination is a leading cause of HCC-related deaths. The inflammatory facilitates this process by promoting the adhesion and invasion of tumor cells in the circulatory system. But the contribution of hemodynamics to this process remains poorly understood due to the lack of a suitable vascular flow model for investigation. This study develops a vascular flow model to examine the impact of hemodynamics on endothelial inflammation-mediated HCC metastasis. This work finds the increasing shear stress will reduce the recruitment of HCC cells by disturbing adhesion forces between endothelium and HCC cells. However, this reduction will be restored by the inflammation. When applying high FSS (4-6 dyn cm-2) to the inflammatory endothelium, there will be a 4.8-fold increase in HCC cell adhesions compared to normal condition. Nevertheless, the increase fold of cell adhesions is inapparent, around 1.5-fold, with low and medium FSS. This effect can be attributed to the FSS-induced upregulation of ICAM-1 and VCAM-1 of the inflammatory endothelium, which serve to strengthen cell binding forces. These findings indicate that hemodynamics plays a key role in HCC metastasis during endothelial inflammation by regulating the expression of adhesion-related factors.

6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 47-52, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322520

RESUMO

Objective: To investigate the mechanical responses of mitochondrial morphology to extracellular matrix stiffness in human mesenchymal stem cells (hMSCs) and the role of AMP-activated protein kinase (AMPK) in the regulation of mitochondrial mechanoresponses. Methods: Two polyacrylamide (PAAm) hydrogels, a soft one with a Young's modulus of 1 kPa and a stiff one of 20 kPa, were prepared by changing the monomer concentrations of acrylamide and bis-acrylamide. Then, hMSCs were cultured on the soft and stiff PAAm hydrogels and changes in mitochondrial morphology were observed using a laser confocal microscope. Western blot was performed to determine the expression and activation of AMPK, a protein associated with mitochondrial homeostasis. Furthermore, the activation of AMPK was regulated on the soft and stiff matrixes by AMPK activator A-769662 and the inhibitor Compound C, respectively, to observe the morphological changes of mitochondria. Results: The morphology of the mitochondria in hMSCs showed heterogeneity when there was a change in gel stiffness. On the 1 kPa soft matrix, 74% mitochondria exhibited a dense, elongated filamentous network structure, while on the 20 kPa stiff matrix, up to 63.3% mitochondria were fragmented or punctate and were sparsely distributed. Western blot results revealed that the phosphorylated AMPK (p-AMPK)/AMPK ratio on the stiff matrix was 1.6 times as high as that on the soft one. Immunofluorescence assay results revealed that the expression of p-AMPK was elevated on the hard matrix and showed nuclear localization, which indicated that the activation of intracellular AMPK increased continuously along with the increase in extracellular matrix stiffness. When the hMSCs on the soft matrix were treated with A-769662, an AMPK activator, the mitochondria transitioned from a filamentous network morphology to a fragmented morphology, with the ratio of filamentous network decreasing from 74% to 9.5%. Additionally, AMPK inhibition with Compound C promoted mitochondrial fusion on the stiff matrix and significantly reduced the generation of punctate mitochondria. Conclusion: Extracellular matrix stiffness regulates mitochondrial morphology in hMSCs through the activation of AMPK. Stiff matrix promotes the AMPK activation, resulting in mitochondrial fission and the subsequent fragmentation of mitochondria. The impact of matrix stiffness on mitochondrial morphology can be reversed by altering the level of AMPK phosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP , Matriz Extracelular , Células-Tronco Mesenquimais , Mitocôndrias , Humanos , Acrilamidas/análise , Acrilamidas/metabolismo , Proteínas Quinases Ativadas por AMP/análise , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos de Bifenilo , Células Cultivadas , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Hidrogéis/análise , Hidrogéis/metabolismo , Pironas , Tiofenos
7.
J Clin Pharmacol ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311835

RESUMO

Hepatocellular carcinoma (HCC) is often diagnosed in advanced stages. Following sorafenib, lenvatinib (LENV) has been approved as a first-line treatment option for unresectable HCC. In the past few years, at least 9 large-scale cohort studies have examined the efficacy and safety of LENV compared to atezolizumab plus bevacizumab (ATE/BEV) in unresectable HCC, but there is currently no direct meta-analysis conducted for a comprehensive consolidation. To provide the most updated meta-analysis of the clinical efficacy and safety of ATE/BEV versus LENV for patients with unresectable HCC. Our studies comparing the efficacy and safety of ATE/BEV and LENV in unresectable HCC were systematically searched in PubMed, Embase, and Web of Science from inception to February 2023. Outcomes measured were overall survival (OS), progression-free survival (PFS), mortality, complete response (CR), partial response (PR), objective response rate (ORR), disease control rate (DCR), progressive disease (PD), stable disease (SD), and adverse events (AEs). Seven eligible studies involving 4428 patients (1569 in the ATE/BEV group and 2859 in the LENV group) were included in the narrative synthesis. All baseline characteristics were similar between the 2 groups except for Child-Pugh class B. Ultimately, our meta-analysis showed that the LENV group had longer OS and PFS than the ATE/BEV group. Moreover, patients on LENV were more likely to achieve SD, whereas those on ATE/BEV were more likely to achieve PR.

8.
iScience ; 27(2): 109018, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38357665

RESUMO

Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-ß inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.

9.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38324621

RESUMO

Single-cell clustered regularly interspaced short palindromic repeats-sequencing (scCRISPR-seq) is an emerging high-throughput CRISPR screening technology where the true cellular response to perturbation is coupled with infected proportion bias of guide RNAs (gRNAs) across different cell clusters. The mixing of these effects introduces noise into scCRISPR-seq data analysis and thus obstacles to relevant studies. We developed scDecouple to decouple true cellular response of perturbation from the influence of infected proportion bias. scDecouple first models the distribution of gene expression profiles in perturbed cells and then iteratively finds the maximum likelihood of cell cluster proportions as well as the cellular response for each gRNA. We demonstrated its performance in a series of simulation experiments. By applying scDecouple to real scCRISPR-seq data, we found that scDecouple enhances the identification of biologically perturbation-related genes. scDecouple can benefit scCRISPR-seq data analysis, especially in the case of heterogeneous samples or complex gRNA libraries.


Assuntos
Ensaios de Triagem em Larga Escala , RNA Guia de Sistemas CRISPR-Cas
10.
Mol Genet Genomics ; 299(1): 19, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416229

RESUMO

KEY MESSAGE: GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Gossypium/genética , Tricomas/genética , Saccharomyces cerevisiae , Regulação da Expressão Gênica
11.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396809

RESUMO

H9N2 avian influenza poses a significant public health risk, necessitating effective vaccines for mass immunization. Oral inactivated vaccines offer advantages like the ease of administration, but their efficacy often requires enhancement through mucosal adjuvants. In a previous study, we established a novel complex of polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) and preliminarily demonstrated its immune-enhancing function. This work aimed to evaluate the efficacy of AMP-ZnONPs as adjuvants in an oral H9N2-inactivated vaccine and the vaccine's impact on intestinal mucosal immunity. In this study, mice were orally vaccinated on days 0 and 14 after adapting to the environment. AMP-ZnONPs significantly improved HI titers, the levels of specific IgG, IgG1 and IgG2a in serum and sIgA in intestinal lavage fluid; increased the number of B-1 and B-2 cells and dendritic cell populations; and enhanced the mRNA expression of intestinal homing factors and immune-related cytokines. Interestingly, AMP-ZnONPs were more likely to affect B-1 cells than B-2 cells. AMP-ZnONPs showed mucosal immune enhancement that was comparable to positive control (cholera toxin, CT), but not to the side effect of weight loss caused by CT. Compared to the whole-inactivated H9N2 virus (WIV) group, the WIV + AMP-ZnONP and WIV + CT groups exhibited opposite shifts in gut microbial abundance. AMP-ZnONPs serve as an effective and safe mucosal adjuvant for oral WIV, improving cellular, humoral and mucosal immunity and microbiota in the gastrointestinal tract, avoiding the related undesired effects of CT.


Assuntos
Atractylodes , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Óxido de Zinco , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Vacinas de Produtos Inativados , Polissacarídeos/farmacologia , Anticorpos Antivirais
12.
Proc Natl Acad Sci U S A ; 121(5): e2318739121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266054

RESUMO

Transfer printing that enables heterogeneous integration of materials into spatially organized, functional arrangements is essential for developing unconventional electronic systems. Here, we report a laser-driven noncontact bubble transfer printing via a hydrogel composite stamp, which features a circular reservoir filled with hydrogel inside a stamp body and encapsulated by a laser absorption layer and an adhesion layer. This composite structure of stamp provides a reversible thermal controlled adhesion in a rapid manner through the liquid-gas phase transition of water in the hydrogel. The ultrasoft nature of hydrogel minimizes the influence of preload on the pick-up performance, which offers a strong interfacial adhesion under a small preload for a reliable damage-free pick-up. The strong light-matter interaction at the interface induces a liquid-gas phase transition to form a bulge on the stamp surface, which eliminates the interfacial adhesion for a successful noncontact printing. Demonstrations of noncontact transfer printing of microscale Si platelets onto various challenging nonadhesive surfaces (e.g., glass, key, wrench, steel sphere, dry petal, droplet) in two-dimensional or three-dimensional layouts illustrate the unusual capabilities for deterministic assembly to develop unconventional electronic systems such as flexible inorganic electronics, curved electronics, and micro-LED display.

13.
BMC Plant Biol ; 24(1): 71, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267860

RESUMO

BACKGROUND: Satellite repeats are one of the most rapidly evolving components in eukaryotic genomes and play vital roles in genome regulation, genome evolution, and speciation. As a consequence, the composition, abundance and chromosome distribution of satellite repeats often exhibit variability across various species, genome, and even individual chromosomes. However, we know little about the satellite repeat evolution in allopolyploid genomes. RESULTS: In this study, we investigated the satellite repeat signature in five okra (Abelmoschus esculentus) accessions using genomic and cytogenetic methods. In each of the five accessions, we identified eight satellite repeats, which exhibited a significant level of intraspecific conservation. Through fluorescence in situ hybridization (FISH) experiments, we observed that the satellite repeats generated multiple signals and exhibited variations in copy number across chromosomes. Intriguingly, we found that five satellite repeats were interspersed with centromeric retrotransposons, signifying their involvement in centromeric satellite repeat identity. We confirmed subgenome-biased amplification patterns of these satellite repeats through existing genome assemblies or dual-color FISH, indicating their distinct dynamic evolution in the allotetraploid okra subgenome. Moreover, we observed the presence of multiple chromosomes harboring the 35 S rDNA loci, alongside another chromosomal pair carrying the 5 S rDNA loci in okra using FISH assay. Remarkably, the intensity of 35 S rDNA hybridization signals varied among chromosomes, with the signals predominantly localized within regions of relatively weak DAPI staining, associated with GC-rich heterochromatin regions. Finally, we observed a similar localization pattern between 35 S rDNA and three satellite repeats with high GC content and confirmed their origin in the intergenic spacer region of the 35 S rDNA. CONCLUSIONS: Our findings uncover a unique satellite repeat signature in the allotetraploid okra, contributing to our understanding of the composition, abundance, and chromosomal distribution of satellite repeats in allopolyploid genomes, further enriching our understanding of their evolutionary dynamics in complex allopolyploid genomes.


Assuntos
Abelmoschus , Abelmoschus/genética , Hibridização in Situ Fluorescente , Genômica , Análise Citogenética , DNA Intergênico , DNA Ribossômico
14.
Int Wound J ; 21(1): e14635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38272805

RESUMO

This study compared the ankle-brachial index (ABI) with transcutaneous oxygen pressure (TcPO2 ) in assessing peripheral vascular disease (PVD) prevalence in 100 diabetic foot ulcer (DFU) patients. Patients were categorized into vascular or nonvascular reconstruction groups and underwent both ABI and TcPO2 measurements four times over 6 months. Predictive validity for PVD diagnosis was analysed using the area under the receiver-operating characteristic curve (AUC). The study found TcPO2 to be a superior predictor of PVD than ABI. Among the DFU patients, 51 with abnormal TcPO2 values underwent vascular reconstruction. Only TcPO2 values showed significant pretreatment differences between the groups and increased post-reconstruction. These values declined over a 6-month follow-up, whereas ABI values rose. For those with end-stage renal disease (ESRD), TcPO2 values saw a sharp decrease within 3 months. Pre-reconstruction TcPO2 was notably lower in amputation patients versus limb salvage surgery patients. In conclusion, TcPO2 is more effective than ABI for evaluating ischemic limb perfusion and revascularization necessity. It should be prioritized as the primary follow-up tool, especially for ESRD patients.


Assuntos
Diabetes Mellitus , Pé Diabético , Falência Renal Crônica , Doenças Vasculares Periféricas , Humanos , Monitorização Transcutânea dos Gases Sanguíneos , Pé Diabético/cirurgia , Pé Diabético/complicações , Isquemia/diagnóstico , Isquemia/cirurgia , Oxigênio/uso terapêutico
15.
Nano Lett ; 24(4): 1137-1144, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252462

RESUMO

Piezoelectricity has been widely explored for nanoelectromechanical applications, yet its working modes are mainly limited in polar directions. Here we discover the intrinsic electro-mechanical response in crystal materials that is transverse to the conventional polarized direction, which is named unconventional piezoelectricity. A Hall-like mechanism is proposed to interpret unconventional piezoelectricity as charge polarization driven by a built-in electric field for systems with asymmetric Berry curvature distributions. Density functional theory simulations and statistical analyses justify such a mechanism and confirm that unconventional piezoelectricity is a general property for various two-dimensional materials with spin splitting or valley splitting. An empirical formula is derived to connect the conventional and unconventional piezoelectricity. The extended understanding of the piezoelectric tensor in quantum materials opens an opportunity for applications in multidirectional energy conversion, broadband operation, and multifunctional sensing.

16.
Dalton Trans ; 53(7): 3267-3279, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38258333

RESUMO

A series of La3(1-x)Ga5MO14:xSm3+ (M = Si or Ge) orange-red phosphors with high color purity, low correlated color temperature, and good thermal stability were successfully synthesized via a high-temperature solid-phase technique. The phase structure and morphology of La3Ga5SiO14(LGSi):xSm3+ and La3Ga5GeO14(LGGe):xSm3+ were investigated. Sm3+-doped LGSi and LGGe phosphors emitted orange-red light under an excitation of 403 nm, and the optimal doping concentrations were 3 mol% and 2 mol% with excellent color purities of 98.46% and 98.25%, respectively. The concentration quenching mechanism of both the samples was dominated by dipole-dipole interaction, and the effect of Si4+ and Ge4+ on luminescence performance was discussed. The internal quantum efficiencies of LGSi:0.03Sm3+ and LGGe:0.02Sm3+ were calculated to be 27.14% and 56.07%, respectively. The CIE and CCT values indicated that the luminescence of the prepared phosphors was in the orange-red region. Additionally, a white light-emitting diode (w-LED) was fabricated with LGGe:0.02Sm3+ phosphors, which was capable of emitting bright and warm white light and exhibiting a high color rendering index (CRI) of 87.17 and an appropriate correlated color temperature (CCT) of 6108 K. These results indicated that the prepared phosphors with excellent luminescent performances have potential application in indoor illumination.

17.
Int J Surg ; 110(2): 943-955, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085826

RESUMO

BACKGROUND: The dermal regeneration template (DRT), a tissue-engineered skin substitute composing a permanent dermal matrix and an upper temporary silicone layer that serves as the epidermis, has demonstrated efficacy in treating uncomplicated diabetic foot ulcers (DFUs). Our institution has obtained good outcomes with DRT in patients with more complicated DFUs. Because of its chronicity, the authors are working to identify a clinical target that anticipates delayed healing early in the treatment in addition to determining the risk factors linked to this endpoint to increase prevention. MATERIALS AND METHODS: This retrospective single-center study analyzed patients with DFUs who underwent wound reconstruction using DRT between 2016 and 2021. The patients were categorized into poor or good graft-take groups based on their DRT status on the 21st day after the application. Their relationship with complete healing (CH) rate at day 180 was analyzed. Variables were collected for risk factors for poor graft take at day 21. Independent risk factors were identified after multivariable analysis. The causes of poor graft take were also reported. RESULTS: This study examined 80 patients (38 and 42 patients in the poor and good graft-take groups, respectively). On day 180, the CH rate was 86.3% overall, but the poor graft-take group had a significantly lower CH rate (76.3 vs. 95.2%, P =0.021) than the good graft-take group. Our analysis identified four independent risk factors: transcutaneous oxygen pressure less than 30 mmHg (odds ratio, 154.14), off-loading device usage (0.03), diabetic neuropathy (6.51), and toe wound (0.20). The most frequent cause of poor graft take was infection (44.7%), followed by vascular compromise (21.1%) and hematoma (15.8%). CONCLUSION: Our study introduces the novel concept of poor graft take at day 21 associated with delayed wound healing. Four independent risk factors were identified, which allows physicians to arrange interventions to mitigate their effects or select patients more precisely. DRT represents a viable alternative to address DFUs, even in complicated wounds. A subsequent split-thickness skin graft is not always necessary to achieve CH.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Estudos Retrospectivos , Pé Diabético/cirurgia , Cicatrização , Engenharia Tecidual , Fatores de Risco
18.
Biomolecules ; 13(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136552

RESUMO

WRKY transcription factors are one of the largest families of transcription regulators that play essential roles in regulating the synthesis of secondary metabolites in plants. Jasmine (Jasminum sambac), renowned for its aromatic nature and fragrant blossoms, possesses a significant abundance of volatile terpene compounds. However, the role of the WRKY family in terpene synthesis in jasmine remains undetermined. In this study, 72 WRKY family genes of J. sambac were identified with their conserved WRKY domains and were categorized into three main groups based on their structural and phylogenetic characteristics. The extensive segmental duplications contributed to the expansion of the WRKY gene family. Expression profiles derived from the transcriptome data and qRT-PCR analysis showed that the majority of JsWRKY genes were significantly upregulated in fully bloomed flowers compared to buds. Furthermore, multiple correlation analyses revealed that the expression patterns of JsWRKYs (JsWRKY27/33/45/51/55/57) were correlated with both distinct terpene compounds (monoterpenes and sesquiterpenes). Notably, the majority of jasmine terpene synthase (JsTPS) genes related to terpene synthesis and containing W-box elements exhibited a significant correlation with JsWRKYs, particularly with JsWRKY51, displaying a strong positive correlation. A subcellular localization analysis showed that JsWRKY51 was localized in the nucleus. Moreover, transgenic tobacco leaves and jasmine calli experiments demonstrated that overexpression of JsWRKY51 was a key factor in enhancing the accumulation of ß-ocimene, which is an important aromatic terpene component. Collectively, our findings suggest the roles of JsWRKY51 and other JsWRKYs in regulating the synthesis of aromatic compounds in J. sambac, providing a foundation for the potential utilization of JsWRKYs to facilitate the breeding of fragrant plant varieties with an improved aroma.


Assuntos
Jasminum , Perfumes , Jasminum/química , Jasminum/genética , Jasminum/metabolismo , Odorantes/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Melhoramento Vegetal , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
J Adv Res ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151116

RESUMO

INTRODUCTION: Light-harvesting chlorophyll a/b-binding (LHCB) protein complexes of photosystem II are integral to the formation of thylakoid structure and the photosynthetic process. They play an important role in photoprotection, a crucial process in leaf development under low-temperature stress. Nonetheless, potential key genes directly related to low-temperature response and albino phenotype have not been precisely identified in tea plant. Moreover, there are no studies simultaneously investigating multiple albino tea cultivars with different temperature sensitivity. OBJECTIVES: The study aimed to clarify the basic characteristics of CsLHCB gene family members, and identify critical CsLHCB genes potentially influential in leaf color phenotypic variation and low-temperature stress response by contrasting green and albino tea cultivars. Concurrently, exploring the differential expression of the CsLHCB gene family across diverse temperature-sensitive albino tea cultivars. METHODS: We identified 20 putative CsLHCB genes according to phylogenetic analysis. Evolutionary relationships, gene duplication, chromosomal localization, and structures were analyzed by TBtools; the physiological and biochemical characteristics were analyzed by protein analysis websites; the differences in coding sequences and protein accumulation in green and albino tea cultivars, gene expression with maturity were tested by molecular biology technology; and protein interaction was analyzed in the STRING database. RESULTS: All genes were categorized into seven groups, mapping onto 7 chromosomes, including three tandem and one segmental duplications. They all own a conserved chlorophyll A/B binding protein domain. The expression of CsLHCB genes was tissue-specific, predominantly in leaves. CsLHCB5 may play a key role in the process of leaf maturation and senescence. In contrast to CsLHCB5, CsLHCB1.1, CsLHCB2, and CsLHCB3.2 were highly conserved in amino acid sequence between green and albino tea cultivars. In albino tea cultivars, unlike in green cultivars, the expression of CsLHCB1.1, CsLHCB1.2, and CsLHCB2 was down-regulated under low-temperature stress. The accumulation of CsLHCB1 and CsLHCB5 proteins was lower in albino tea cultivars. Greater accumulation of CsLHCB2 protein was detected in RX1 and RX2 compared to other albino cultivars. CONCLUSIONS: CsLHCB1.1, CsLHCB1.2, and CsLHCB2 played a role in the response to low-temperature stress. The amino acid sequence site mutation of CsLHCB5 would distinguish the green and albino tea cultivars. The less accumulation of CsLHCB1 and CsLHCB5 had a potential influence on albino leaves. Albino cultivars more sensitive to temperature exhibited lower CsLHCB gene expression. CsLHCB2 may serve as an indicator of temperature sensitivity differences in albino tea cultivars. This study could provide a reference for further studies of the functions of the CsLHCB family and contribute to research on the mechanism of the albino in tea plant.

20.
Biol Reprod ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975917

RESUMO

Mammalian spermatogenesis is a highly complex multi-step biological process, and autophagy has been demonstrated to be involved in the process of spermatogenesis. Beclin-1/BECN1, a core autophagy factor, plays a critical role in many biological processes and diseases. However, its function in spermatogenesis remains largely unclear. In the present study, germ cell-specific Beclin 1 (Becn1) knockout mice were generated and were conducted to determine the role of Becn1 in spermatogenesis and fertility of mice. Results indicate that Becn1 deficiency leads to reduced sperm motility and quantity, partial failure of spermiation, actin network disruption, excessive residual cytoplasm, acrosome malformation, aberrant mitochondrial accumulation of sperm, ultimately resulting in reduced fertility in male mice. Furthermore, inhibition of autophagy was observed in the testes of germ cell-specific Becn1 knockout mice, which may contribute to impaired spermiogenesis and reduced fertility. Collectively, our results reveal that Becn1 is essential for fertility and spermiogenesis in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...